Philosophy 110; Lecture 1 (Day 2)

1. What Is Logic?

Logic is the *science of reasoning*, which is to say: the discipline that studies and evaluates reasoning.

2. What Is Reasoning?

Reasoning is *inferring*, or making inferences.

To *infer* is

to draw conclusions (output) from premises (input).

Example 1:

You see smoke,	(input)
and you <i>infer</i> that	
there is a fire	(output)

Example 2:

You count 19 in a group	(input)
that originally had 20,	(input)
and you <i>infer</i> that	
someone is missing	(output)

3. Arguments

Logic evaluates reasoning in terms of arguments.

An argument is

a collection of **statements**, one of which is designated as the *conclusion*, and the remainder of which are designated as the *premises*.

A statement is

a declarative sentence,

i.e., a sentence that is capable of being true or false.

Example 1:

there is smok	(e	. (premise)
therefore,		
there is fire .	(0	conclusion)

Example 2:

4. Deductive Logic versus Inductive Logic

In Example 1, the truth of the premise *does not guarantee* the truth of the conclusion, but only makes the conclusion *likely*.

By contrast, in Example 2, the truth of the premises *guarantees* the truth of the conclusion.

This corresponds to the traditional distinction between

INDUCTIVE LOGIC

and

DEDUCTIVE LOGIC

5. Validity, Factual Correctness, and Soundness

Two questions about an argument.

- 1. Are the premises true?
- 2. Does the conclusion **follow from** the premises?

Alternatively,

- 1. Are the premises *supported by* the facts?
- 2. Is the conclusion *supported by* the premises?

6. Definitions

An argument is

factually correct	if and only if	all of its premises are true.
valid	if and only if	its conclusion follows from its premises.
sound	if and only if	it is <i>both</i> factually correct <i>and</i> valid.

7. Examples to evaluate

Parish is taller than McHale	Factually Correct?
McHale is taller than Bird	Valid?
/ Parish is taller than Bird	Sound?

Parish is taller than McHale	Factually Correct?
Parish is taller than Bird	Valid?
/ McHale is taller than Bird	Sound?

Bird is taller than McHale	Factually Correct?
McHale is taller than Parish	Valid?
/ Bird is taller than Parish	Sound?

McHale is taller than Parish	Factually Correct?
McHale is taller than Bird	Valid?
/ Bird is taller than Parish	Sound?

8. The Fundamental Principle Of Logic

WHETHER AN ARGUMENT IS **VALID** OR **INVALID** IS DETERMINED ENTIRELY BY ITS *FORM*.

In other words,

VALIDITY IS A FUNCTION OF FORM.

In other words,

IF AN ARGUMENT IS **VALID**, THEN EVERY ARGUMENT WITH THE SAME FORM IS ALSO **VALID**.

And similarly,

IF AN ARGUMENT IS **INVALID**, THEN EVERY ARGUMENT WITH THE SAME FORM IS ALSO **INVALID**.

A. The Fundamental Principle

IF AN ARGUMENT IS **VALID**, THEN EVERY ARGUMENT WITH THE SAME FORM IS ALSO **VALID**.

B. The "Trivial" Principle Of Logic

IF AN ARGUMENT HAS ALL TRUE PREMISES BUT A FALSE CONCLUSION, THEN IT IS **INVALID**.

Terminology:

if an argument *clearly* has all true premises, but a false conclusion, we say that it is OBVIOUSLY INVALID.

C. Putting A and B together:

SUPPOSE ARGUMENT A₁ HAS THE **SAME FORM** AS A₂; SUPPOSE THAT A₂ IS **OBVIOUSLY INVALID**; THEN A₁ IS ALSO **INVALID**.

9. The Method Of Counterexamples

In order to show that an argument is **invalid**, it is sufficient to find a **counterexample**.

A. Definition of 'counterexample'

Let A be an argument. Then a *COUNTEREXAMPLE TO* A is, by definition, any argument A* with the following properties:

- 1. A HAS THE <u>SAME FORM</u> AS A*;
- 2. A* HAS ALL TRUE PREMISES;
- 3. A* HAS A FALSE CONCLUSION.

B. Example 1:

Argument:

	Parish is taller than McHale	Т	
	Parish is taller than Bird	Т	
	/ <u>McHale</u> is taller than <u>Bird</u>	Т	
Fc	orm:		
	X is taller than Y		
	X is taller than Z		
	/ Y is taller than Z		
Counterexample:			
	The Library is taller than PeeWee Herman	Т	
	The Library is taller than Bill Bradley	Т	
	/ <u>PeeWee Herman</u> is taller than <u>Bill Bradley</u>	F	

C. Example 2:

Argument:

all <u>UMass Students</u> are <u>High School Graduates</u>	Т
some <u>High School Graduates</u> are <u>Athletes</u>	Т
/ some <u>UMass Students</u> are <u>Athletes</u>	Т

Form:

all X are Y

some Y are Z

/ some X are Z

Counterexample:

all <u>UMass Students</u> are <u>High School Graduates</u>	Т
some High School Graduates are U.S. Senators	Т
/ some UMass Students are U.S. Senators	F